
Introduction to Apache
Spark

What is Apache
Spark??

What is Hadoop??

Some History

• Early 2000s - Google needed tools to process very large amounts of data
• Google File System (GFS)

• Map Reduce: https://research.google/pubs/pub62/

• Google BigTable

•On publishing papers about these technologies, development of
open-source implementations was taken up by Yahoo, Cloudera,
Hortonworks and others

•These projects were eventually donated to the Apache Software
Foundation

https://research.google/pubs/pub62/

Some History

• Map Reduce was a ground-breaking programming paradigm for parallel
computing

• However, the Hadoop implementation had some drawbacks
• Very verbose code – lots of boilerplate required

• Complex for developers to write Jobs

• Not very fault-tolerant

• Slow

• Heavily reliant on disk I/O

Map-Reduce Java

Let's take a simple example

Let's explore this in
Python!

Hadoop Core

• Where does the name "Hadoop" come from?

Hadoop Core Principles (1)

• Hadoop was one of the first open-source big data technologies
• Scalable, fault-tolerant system for processing large datasets…
• Across a cluster of commodity servers

• Hadoop provides high availability and fault tolerance
• You don't need to buy expensive hardware
• Hadoop is well suited for batch processing and ETL (extract transform load) of

large-scale data

• Many organizations replaced expensive commercial products with Hadoop
• Cost benefits - Hadoop is open source, runs on commodity h/w
• Easily scalable - just add some more (relatively cheap) servers

Hadoop Core Principles (2)

• Hadoop uses a cluster of commodity servers for storing and processing large amounts
of data

• Cheaper than using high-end powerful servers
• Hadoop uses a scale-out architecture (rather than scale-up)

• Hadoop is designed to work best with a relatively small number of huge files
• Commonly ,the average file size in Hadoop is > 500MB

Hadoop Core Principles (3)

• Hadoop implements fault tolerance through software
• Cheaper than implementing fault tolerance through hardware
• Hadoop doesn't rely on fault-tolerant servers
• Hadoop assumes servers fail, and transparently handles

failures

• Developers don't need to worry about handling hardware
failures

• You can leave Hadoop to handle these messy details

Hadoop Core Principles (4)

• Moving code from one computer to another is much faster and
more efficient than moving large datasets

• E.g. imagine you have a cluster of 50 computers with 1TB of
data on each computer - what are the options for processing
this data?

Hadoop Core Components

• Hadoop isn't really a single product, it's an eco-system
• At its heart are three key components...

Hadoop Distributed File System (2)

• HDFS is a scalable and fault-tolerant distributed file system
• Stores a file across a cluster of commodity servers (e.g. 1000s)
• Aim: to store and allow fast access to big files and large datasets

• HDFS is a block-structured file system
• Splits a file into fixed-size opaque blocks, aka partitions or slices
• Default block size 128MB (c.f. ~4KB block size on Linux)

• HDFS spreads file blocks across "worker node" machines
• Allows file read/write operations to be massively parallelized

Why Spark?

• Spark grew out of the need to have a simpler, faster, more robust way to
program with parallelism

• Research groups in UC Berkeley began working on this, with some guiding
principles
• Highly Fault Tolerant

• 100% Parallel

• In-memory Intermediate results

• Easy API

• Program in multiple languages – e.g. Java, Scala, Python, R

Apache Spark

• "A unified engine for large-scale data analytics"
• Based on the concept of an "RDD"

• Resilient

• Distributed

• Dataset

• Spark creates a Directed Acyclic Graph (DAG) for a
job

• Jobs are written through higher-level APIs

Spark is "similar" to MR

Spark & DAG

• DAG is a finite direct graph with no directed cycles. There are finitely
many vertices and edges

• vertices represent the RDDs and the edges represent the Operation to be applied on
RDD

• With the original Hadoop MR framework, the programmer would effectively "write"
the DAG in his code

• Frameworks like Apache Hive, PIG & Impala, gave a high-level API "on-top" of MR.
These tools would create the DAG based on high level instructions

Spark & DAG

• RDDs are
Resilient

• The DAG
contains the
instructions to
recreate any
intermediate
RDD

Spark Vs MR

• With MR, intermediate RDDs are saved to disk

Spark Vs MR

• Spark tries to
keep intermediate
RDDs in memory

• Interactive
Sessions

• Long-running jobs

• Streaming
Applications

Spark Examples

• Let's take our first steps with Spark in Python & Scala

• References: https://github.com/fcallaly/spark-intro-examples

https://github.com/fcallaly/spark-intro-examples

Questions?

	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

