
Introduction to Apache 
Spark



What is Apache 
Spark??

What is Hadoop??



Some History

• Early 2000s - Google needed tools to process very large amounts of data
• Google File System (GFS)

• Map Reduce: https://research.google/pubs/pub62/

• Google BigTable

•On publishing papers about these technologies, development of 
open-source implementations was taken up by Yahoo, Cloudera, 
Hortonworks and others

•These projects were eventually donated to the Apache Software 
Foundation

https://research.google/pubs/pub62/


Some History

• Map Reduce was a ground-breaking programming paradigm for parallel 
computing

• However, the Hadoop implementation had some drawbacks
• Very verbose code – lots of boilerplate required

• Complex for developers to write Jobs

• Not very fault-tolerant

• Slow

• Heavily reliant on disk I/O



Map-Reduce Java



Let's take a simple example



Let's explore this in 
Python!



Hadoop Core

• Where does the name "Hadoop" come from?



Hadoop Core Principles (1)

• Hadoop was one of the first open-source big data technologies
• Scalable, fault-tolerant system for processing large datasets…
• Across a cluster of commodity servers

• Hadoop provides high availability and fault tolerance
• You don't need to buy expensive hardware
• Hadoop is well suited for batch processing and ETL (extract transform load) of 

large-scale data

• Many organizations replaced expensive commercial products with Hadoop
• Cost benefits - Hadoop is open source, runs on commodity h/w
• Easily scalable - just add some more (relatively cheap) servers



Hadoop Core Principles (2)

• Hadoop uses a cluster of commodity servers for storing and processing large amounts 
of data

•  Cheaper than using high-end powerful servers
•  Hadoop uses a scale-out architecture (rather than scale-up)

• Hadoop is designed to work best with a relatively small number of huge files
• Commonly ,the average file size in Hadoop is > 500MB



Hadoop Core Principles (3)

• Hadoop implements fault tolerance through software
•  Cheaper than implementing fault tolerance through hardware
•  Hadoop doesn't rely on fault-tolerant servers 
•  Hadoop assumes servers fail, and transparently handles 

failures

• Developers don't need to worry about handling hardware 
failures

•  You can leave Hadoop to handle these messy details



Hadoop Core Principles (4)

• Moving code from one computer to another is much faster and 
more efficient than moving large datasets

•  E.g. imagine you have a cluster of 50 computers with 1TB of 
data on each computer - what are the options for processing 
this data?



Hadoop Core Components

• Hadoop isn't really a single product, it's an eco-system
•  At its heart are three key components...



Hadoop Distributed File System (2)

• HDFS is a scalable and fault-tolerant distributed file system
•  Stores a file across a cluster of commodity servers (e.g. 1000s)
•  Aim: to store and allow fast access to big files and large datasets

• HDFS is a block-structured file system
•  Splits a file into fixed-size opaque blocks, aka partitions or slices
•  Default block size 128MB (c.f. ~4KB block size on Linux)

• HDFS spreads file blocks across "worker node" machines
•  Allows file read/write operations to be massively parallelized



Why Spark?

• Spark grew out of the need to have a simpler, faster, more robust way to 
program with parallelism

• Research groups in UC Berkeley began working on this, with some guiding 
principles
• Highly Fault Tolerant

• 100% Parallel

• In-memory Intermediate results

• Easy API

• Program in multiple languages – e.g. Java, Scala, Python, R



Apache Spark

• "A unified engine for large-scale data analytics"
• Based on the concept of an "RDD"

• Resilient

• Distributed

• Dataset

• Spark creates a Directed Acyclic Graph (DAG) for a 
job

• Jobs are written through higher-level APIs



Spark is "similar" to MR



Spark & DAG

• DAG is a finite direct graph with no directed cycles. There are finitely 
many vertices and edges

• vertices represent the RDDs and the edges represent the Operation to be applied on 
RDD

• With the original Hadoop MR framework, the programmer would effectively "write" 
the DAG in his code

• Frameworks like Apache Hive, PIG & Impala, gave a high-level API "on-top" of MR. 
These tools would create the DAG based on high level instructions 



Spark & DAG

• RDDs are 
Resilient

• The DAG 
contains the 
instructions to 
recreate any 
intermediate 
RDD



Spark Vs MR

• With MR, intermediate RDDs are saved to disk



Spark Vs MR

• Spark tries to 
keep intermediate 
RDDs in memory

• Interactive 
Sessions

• Long-running jobs

• Streaming 
Applications



Spark Examples

• Let's take our first steps with Spark in Python & Scala

• References: https://github.com/fcallaly/spark-intro-examples

https://github.com/fcallaly/spark-intro-examples


Questions?
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